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1. INTRODUCTION

Parasites rely on their hosts as their habitats and sour-
ces of energy supply. So they may suffer some negative
effects owing to inactivity or even death of their hosts if
they intensively exploit their hosts. It is, therefore,
believed that parasites do not harm their hosts as much
as they could (Roughgarden, 1975). Ishikawa (1988)
stated that it is a natural process to evolve from
parasitism to mutualism through commensalism and
expressed this process in a phrase: an enemy today is a
friend tomorrow. Ewald (1987) also claimed that
parasitism should eventually evolve toward commen-
salism, and a commensal relationship is viewed as a raw
material for the evolution of mutualism. Indeed the time
course of the reduction of parasite virulence has been
documented in various parasites and diseases. An
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example of the myxoma virus which was introduced in
Australia to kill agriculturally harmful rabbits is well
known (Fenner, 1965). However, it is also a fact that
many parasites remain virulent to their hosts (Ewald,
1994). Thus, some parasites continue to be virulent,
while others have reduced their virulence to become
mutualistic symbionts for the host.

According to the theory of natural selection, a selfish
organism exploiting other organisms has a reproductive
advantage over a non-selfish organism in general.
It is, therefore, a big mystery why such a mutualistic
relationship can evolve where an organism contributes
to another organism and sacrifices its own reproduc-
tion. The primary question is under what conditions
mutualism evolves from parasitism. Ewald (1987)
suggested that vertical transmission, defined as the direct
transfer of a symbiont from a parent host to its progeny,
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is a key factor for reduction of symbiont virulence and
the evolution of mutualism. When the parasite owes its
reproduction to vertical transmission, it should reduce
virulence to increase productivity of the host. Actually,
the symptoms of diseases which mainly infect other hosts
by vertical transmission are relatively light, while those
of diseases which randomly spread are relatively heavy.
The examples where symbionts are transmitted perfectly
by vertical transmission are mycetocyte bacteria and
yeasts in cockroaches, homopterans and many beetles
(Douglas, 1989), and endophytic fungi in various grasses
and sedges (Clay, 1990a). In such cases, symbionts are
considered to be really mutualistic to their hosts.

The evolution of reduced virulence has been analyzed
by various mathematical models (May and Anderson,
1983; Nowak, 1991; Lenski and May, 1994), but there
are few theoretical studies to explain the evolution of
mutualism (but see Frank, 1995). Yamamura (1993,
1996) developed a mathematical model, showing that
there is a critical level on the vertical transmission rate,
below which natural selection in the parasite would
increase the rate while that in the host would not, and
above which both sides would simultaneously increase
the rate. Therefore, once the parasite dominates the
evolutionary race so as to overcome the critical level of
vertical transmission, a highly mutualistic relationship
with a high vertical transmission rate evolves. This criti-
cal level is reduced when either the host or the parasite
develops the ability to use waste products of the other,
which can initiate the evolution of mutualistic symbiosis
with a high vertical transmission rate.

There exist many cases, however, where two partners
seem to help each other in a surprisingly intimate manner
but symbionts are not transmitted by vertical transmis-
sion (Law and Lewis, 1983; Douglas, 1995). Mycorrhizal
fungi are not vertically transmitted through the seed of
plants, nor are the dinoflagellates of about half coral
species through the egg. Rhizobia, nitrogen-fixing bac-
teria symbiotic to legumes, and luminescent bacteria in
various teleost fish and cephalopod molluscs are not also
vertically transmitted. In such examples of symbioses
without vertical transmission, symbionts have a free-
living state, independent of their hosts. If a symbiont is
beneficial to a host, the host that harbors the symbiont in
its body should be favored by natural selection. If the
host transfers the symbiont to its offspring by vertical
transmission, the acquisition of the symbiont is reliably
assured, while if the host does not, it has the possibility
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of failing to acquire the symbiont. A critical question is
why all mutualisms do not evolve perfect vertical trans-
mission. Although several answers to the question may
be considered, one of those would be that there are some
costs in the host when the symbiont is vertically transmit-
ted (Yamamura et al., 1995; Yamamura, 1997). Carrying
the symbiont may cause energy costs in immature hosts,
or other parasites may infect by utilizing the vertical
transmission mechanism of the symbiont.

Incorporating the costs in vertical transmission, we
develop a simple mathematical model to identify the con-
ditions under which evolution of mutualism without ver-
tical transmission may occur. We deal with a facultative
symbiosis where symbionts can survive and reproduce
outside the hosts, rather than an obligate symbiosis
where they cannot reproduce anywhere but inside their
hosts as modeled by Yamamura (1993, 1996). Because
symbionts that are not vertically transmitted actually
reproduce outside their hosts (e.g., mycorrhizal fungi,
rhizobia, and some dinoflagellates), we assume that sym-
bionts at the beginning stages of symbiosis were able to
reproduce in the environment. The model is constructed
under a hierarchy of three separate timescales: a micro-
scopic timescale on which the population dynamics
determining abundance occurs, a mesoscopic timescale
on which the symbionts change virulence to the hosts,
and a macroscopic timescale on which changes in the
vertical transmission rate and other parameters take
place (Dieckmann and Law, 1996; Marrow et al., 1996).
The difference between the mesoscopic and macroscopic
timescales is assumed from the fact that rapid changes
in symbiont virulence have been often reported (e.g.,
Fenner, 1965), while we are aware of no examples which
report so rapid changes in the vertical transmission rate
or other parameters.

2. THE MODEL

We consider the host and the symbiont populations as
overlapping ones such that the epidemiological dynamics
is described by the differential equations

dU
dt

=bnU& f (U, I ) } U+(1&r) bI&cUS, (1)

dI
dt

= prbI& f (U, I ) } I+cUS, (2)

dS
dt

=;S& g(S) } S+aI&cUS, (3)

Genkai-Kato and Yamamura
where U, I, and S refer to the numbers of uninfected
hosts, infected hosts, and symbionts in a free-living state,
respectively (see Fig. 1). The uninfected host, infected



FIG. 1. A scheme of dynamics represented by Eqs. (1)�(3). Unin-
fected (U) and infected (I ) hosts reproduce at different rates, b and bn ,
respectively, but have the same death rate f (U, I ). Symbionts in a free-
living state (S) reproduce at a rate ; and have a death rate g(S). Off-
spring of the infected host are vertically infected at a rate r. Only a frac-
tion p of the vertically infected offspring are able to become adult
because of some costs involved in vertical transmission. The number of
symbionts released from an infected host into the free-living state is a.
The uninfected host is infected by the symbiont in the free-living state
at a rate cS.

host, and symbiont in the free-living state reproduce their
offspring at rates, bn , b, and ;, respectively. The terms
f (U, I ) and g(S) refer to the death rates of the host and
the symbiont, respectively. While all offspring of the
uninfected host are uninfected, only a fraction r of off-
spring of the infected host is infected from birth by verti-
cal transmission and the remaining fraction 1&r of off-
spring is uninfected. We call here r the vertical transmis-
sion rate, taking a value between 0 and 1. We assume that
there exist some costs when a symbiont is vertically
transmitted. The costs are incorporated into the model as
follows: only a fraction p of vertically infected host off-
spring can survive to become adults, where p takes a
value between 0 and 1. One of the reasons for the costs
may be existence of harmful intruders which ride
together in the mechanism of vertical transmission of
symbionts. Another may be a heavy burden of having the
symbiont for immature hosts so that a part of them could
not grow up to the adult stage. The infection rate from
the symbiont in the free-living state to the uninfected host
is assumed to be proportional to the product of numbers
of the uninfected hosts and the symbionts in the free-
living state. The proportional coefficient is c. In our model,
direct horizontal transmission from the infected host to
the uninfected host is not involved. The symbionts repro-
duced inside the host are released into the free-living
state. The number of released symbionts from one host
per unit time is a.

We assume that the mortality terms include a density
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effect: the organisms suffer negative effects when the
numbers become large, because of a lack of habitats or
energy resources. For simplicity, we make an assumption
with regard to the mortality term of the symbiont in the
free-living state, g(S), that the density dependency out-
side the host is so strong that the population in the free-
living state has a carrying capacity S0 and the deviation
in the equilibrium value of S from the carrying capacity
S0 is negligible even if parameters in Eqs. (1)�(3) change.
This is assumed also because symbionts are usually
microorganisms such that the reproduction rate and,
thus, the density outside the host is determined mainly by
environmental conditions in their habitats. At equi-
librium, the population of the symbiont in the free-living
state is, therefore, always equal to S0 . As for the mor-
tality term of the host, we assume that f (U, I ) is an
increasing function of U and I, and that f (0, 0) is smaller
than a certain value so that positive equilibrium values of
U and I exist.

At equilibrium, the right-hand sides of Eqs. (1)�(3) are
equal to zero,

bn U*& f (U*, I*) } U*+(1&r) bI*&cU*S0=0, (4)

prbI*& f (U*, I*) } I*+cU*S0=0, (5)

;S0& g(S0) } S0+aI*&cU*S0=0, (6)

where U*, I*, and S0 refer to the equilibrium values of U,
I, and S, respectively. Adding Eqs. (4) and (5), we have

bnU*+[(1&r)+ pr] bI*& f (U*, I*) } (U*+I*)=0.

(7)

This leads to an equation at equilibrium for the death
rate of the host,

f (U*, I*)=
bnU*+[(1&r)+ pr] bI*

H*
, (8)

where H*=U*+I*, the equilibrium value of the total
number of the hosts. Inserting Eq. (8) and U*=H*&I*
into Eq. (5), and dividing it by H*, we have

cS0+( prb&bn&cS0) !*

&[[(1&r)+ pr] b&bn] !*2=0, (9)

where !*=I*�H*, the proportion of the infected host.
Since the left-hand side is positive at !*=0 and negative
at !*=1 when r<1, the equation has only one solution
for !* between 0 and 1:
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!*=
prb&bn&cS0+- D

2[[(1&r)+ pr] b&bn]
(10)

D=( prb&bn&cS0)2+4cS0[[(1&r)+ pr] b&bn].



We can also show the uniqueness of U* and I* (see
Appendix 1). This equilibrium point is stable provided
that f (U, I ) is an increasing function of U and I, and that
f (0, 0) is smaller than a certain value. When f (0, 0) is
larger than the critical value, there is no positive equi-
librium and (U, I)=(0, 0) is the unique stable equi-
librium (Appendix 1).

Next, we consider evolution of symbiont virulence
where other parameters are constant. Equilibrium values
of the populations are set by the current virulence, but
gradually change as the virulence evolves. Afterward we
analyze evolution of other parameters because the
evolutionary rate of virulence is assumed to be rather
faster than that of the other parameters.

3. EVOLUTION OF THE DEGREE OF
EXPLOITATION BY SYMBIONTS

If a symbiont exploits its host more intensively, it can
reproduce more inside the host while it damages the host
and decreases the host reproduction rate. We assume
that a and b are functions of the symbiont strategy, x, i.e.,
a(x) and b(x). The strategy, x, is the degree of exploita-
tion of its host per unit time, for example, in energy units.
Though a(x) is basically an increasing function of x
(Type I in Fig. 2), we also analyze the case where at large
values of x, it is a decreasing function of x due to some
negative effect from the host (Type II in Fig. 2). In other
words, the host's value to the symbiont diminishes if the
symbiont intensively exploits its host. This negative effect
is, for example, caused by degradation of the environ-
ment inside the host owing to poor health conditions of
the host or an increase in the host's defense level. The
reproduction rate of the infected host, b(x), is naturally
a decreasing function of x as shown in Fig. 2.

In order to obtain an evolutionary stable strategy
(ESS; Maynard-Smith, 1974) of the symbiont, we calcu-
late the fitness of mutants adopting a strategy x in the
population with most symbionts having strategy x*. As
in most ESS models (Maynard-Smith, 1982; Yamamura,
1987), we assume that the number of the mutant sym-
bionts is so small that the equilibrium numbers of the
infected and uninfected hosts in this case are almost
the same as those in the case where all symbionts have
the same strategy x*.

Under these assumptions, the relative fitness of a
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mutant symbiont is given as

WS(x, x*)= prb(x)+
cU*S0

a(x*) I*
} a(x). (11)
FIG. 2. The number of symbionts released from one infected host
per unit time a(x) and the reproduction rate of the infected host b(x) as
functions of the degree of exploitation x. Negative values of x mean that
the symbiont assists its host at some sacrifice to its own reproduction.
A function a(x) can be separated into two types. Type I is a monotoni-
cally increasing function of x (broken line) and takes a form
a(x)=a0+a1 x. In Type II, there is a critical value, x̂, below which a(x)
is an increasing function of x and takes the same form as Type I, and
above which it is a decreasing function of x and takes a form
a(x)=[(a0+a1 x̂)�(b0&b1 x̂)] } (b0&b1x). As for b(x), it is a mono-
tonically decreasing function of x and takes a form b(x)=b0&b1x. For
a(x) and b(x) to be positive, the value of x is limited in the interval
&a0 �a1�x�b0 �b1 .

This fitness function is derived from the dynamics of
the mutant symbionts which adopt a slightly different
strategy x from the wild-type strategy x* (see
Appendix 2). We can give an intuitive interpretation for
Eq. (11). The first term means the fitness of a mutant
symbiont through the reproduction of an infected host by
vertical transmission. The second term means the fitness
through the route passing the free-living state: the num-
ber of free symbionts released from a host, a(x), is
weighted by the equilibria ratio of the flow from the free-
living state to the symbiotic state to the flow in the
opposite direction.

If x* is an ESS, Eq. (11) must take the maximum value
at x=x* as a function of x. The necessary condition is

�WS(x, x*)
�x }x=x*

= pr
db(x)

dx }x=x*

+
cU*S0

a(x*) I*
}
da(x)

dx }x=x*

=0.

(12)

Genkai-Kato and Yamamura
If there is no vertical transmission (i.e., r=0), the ESS x*
is the value at which a(x) takes the maximum value.



In order to calculate x* in Eq. (12) explicitly, we give
simple functions for a(x) and b(x) as follows. We assume

a(x)={a0+a1x
a decreasing function of x

for x�x̂
for x�x̂,

(13)

where x̂ is a critical value of exploitation below which the
symbiont can raise a(x) as x increases, and above which
the symbiont reduces a(x) by exploiting its host too
intensively. The value of a1 is always positive, while the
value of a0 is zero when the symbiont is unable to
reproduce without exploiting its host. When it can
reproduce some without exploitation, a0 is positive. We
assume that the vertical transmission rate is independent
of the symbiont strategy, x, and that the number of sym-
bionts released from an infected host, a(x), does not
reduce at the cost of vertical transmission. This is because
we imagine a case where the vertical transmission rate is
determined not by the number of the symbionts inside
the host but by the efficiency of some mechanistic method
of transmission. As for b(x), we assume the simplest
linear function

b(x)=b0&b1 x, (14)

where b1 is positive. The value of b0 is naturally positive
because the reproduction rate of hosts is positive when
nothing is exploited (i.e., x=0). We discriminate b0 from
bn which is the reproduction rate of the uninfected host,
because we will consider an evolutionary change in b0

later. For the moment, we assume that b0 is not smaller
than bn (i.e., b0�bn).

Although the expression ``exploitation'' implies x to be
positive, we also extend x to negative values, which
means that the symbiont assists its host at some sacrifice
to its own reproduction. Since the number of symbionts
released from one host per unit time, a(x), and the
reproduction rate of the infected host, b(x), must be zero
or positive, the value of x is restricted in the interval
&a0 �a1�x�b0 �b1 . Negative values of x are admissible
only when a0 takes positive values. The critical value x̂ in
Eq. (13), above which a(x) is a decreasing function,
should take a value between 0 and b0 �b1 . Putting
x̂=b0�b1 , we can also analyze the case where a(x) does
not have any decreasing parts. We call this case Type I
while the former case where a(x̂) takes a maximum value
is called Type II. The functions of a(x) and b(x) are
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illustrated in Fig. 2.
We can show that the ESS value x* is never larger than

x̂ (&a0 �a1�x*�x̂). If x* took a value between x̂ and
b0 �b1 (x̂<x*�b0 �b1), the right-hand side of Eq. (12)
should be always negative because a(x) and b(x) are
deceasing functions of x in the interval. Therefore, sym-
bionts should evolve to decrease x* to x̂. Inserting
Eq. (13) for x�x̂ and Eq. (14) into Eq. (12), we have

& prb1+a1 }
cU*S0

(a0+a1x*) I*
=0. (15)

From Eq. (15), we have the ESS x* when x*�x̂,

x*=&
a0

a1

+
1&r

p2hr2&a1[ pbn+(1& p) cS0] r+a1 cS0

_
hcS0

b1

, (16)

where h=a0b1+a1b0 (see Appendix 3). Note that in
Eq. (16) x*=b0 �b1 when r=0 and x*=&a0 �a1 when
r=1. The denominator of the second term must be
positive, because, if negative, the second term becomes
negative so that x* becomes smaller than &a0 �a1 . Thus,
x* in Eq. (16) is a decreasing function of r. As previously
shown, however, the ESS cannot be larger than x̂. There-
fore, the ESS is x̂ when the left-hand side of Eq. (16) is
larger than x̂ as shown in Fig. 3. If a(x) takes Type I
instead of Type II, x̂=b0 �b1 .

The relationship between x* and r can be classified
into several cases according to the values of parameters
p and cS0 as shown in Fig. 3 (see Appendix 3). The ESS
value of x* is a non-increasing function of r, which
is similar to that in an obligate symbiosis model
(Yamamura 1996). It is reasonable that the higher the
vertical transmission rate, the more the symbiont should
reduce the degree of exploitation on the host because its
reproduction owes the reproduction of the host. There is
a critical vertical transmission rate r̂ such that x*( r̂)=x̂
in Eq. (16). The degree of exploitation decreases with
increasing r when r> r̂, and x*=x̂ when r< r̂. We can
see from Fig. 3 that the constant range (x*=x̂) becomes
larger as cS0 becomes smaller. When the value cS0 is
lower than bn , there exists a critical value of p below
which the ESS x* is always x̂ and is independent of r.
This means that even if the vertical transmission rate is
high, the symbiont would never help its host at some
sacrifice to its reproduction when the costs involved in
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vertical transmission are large. When pr is low, the
reproduction of the symbiont is not closely coupled to
the reproduction of its host, so the symbiont need not
reduce its virulence to the host.



FIG. 3. Relationship between the ESS degree of exploitation x*
and the vertical transmission rate r. (a) The relationship between x*
and r in Eq. (16) can be classified into three cases according to the
values of parameters cS0 and p. An oblique line is ph=a1 (bn&cS0).
(b)�(d) Relationship between x* and r in Eq. (16): (b) monotonically
decreasing function, (c) non-monotonic function, and (d) monotoni-
cally increasing function in Eq. (16) but in practice a constant function
independent of r. There is a critical vertical transmission rate r̂ in (b)
and (c), below which x*=x̂ and above which x* is a decreasing func-
tion of r. Arrows in (b)�(d) stand for the directions of evolution: in
areas where the arrow points upward the right-hand side of Eq. (12) is
positive, and in areas where the arrow points downward it is negative.
In these graphs, the values of parameters are a0=0.3, a1=1.0, bn=1.0,
b0=1.2, and b1=0.5, which are common in (b)�(d); (b) cS0=1.2,
p=0.8; (c) cS0=0.5, p=0.8; (d) cS0=0.3, p=0.4. With these values of
parameters, the degree of exploitation is restricted in the interval
&0.3�x�2.4. If a function a(x) takes Type I in Fig. 2, a critical value
x̂ is equal to b0�b1 (i.e., 2.4).

4. EVOLUTION OF THE VERTICAL
TRANSMISSION RATE

We consider evolution of r from the viewpoint of the
symbiont where the degree of exploitation is settled as a
corresponding ESS x* to the current value of r*. The
relative fitness of a mutant symbiont with a vertical
transmission rate r in the wild-type symbionts with r* is
given as
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WS(r, r*)= prb(x*(r*))+
cU*S0

a(x*(r*)) I*
} a(x*(r*)),

(17)
where the number of the mutant symbionts is assumed to
be small as in Eq. (11). This fitness function is derived
from the dynamics of the mutant symbionts, adopting a
slightly different strategy r from the wild-type strategy r*
(see Appendix 2). Reflecting the assumption that the
number of symbionts released from the host per unit
time, a(x*(r*)), is not reduced at the cost of vertical
transmission, the mutant fitness always increases as r
increases. If this trait is controlled only by the symbiont,
the highest possible rate would evolve so that mutualism
without vertical transmission never evolves.

Next, we consider the evolution of r from the view-
point of the host. The relative fitness of a mutant host
with r in the wild-type hosts with r* is calculated as

WH(r, r*)=[ p(1&r*) b(x*) I*&cU*S0] r+constant.

(18)

This fitness function is derived from the dynamics of the
mutant hosts, adopting a slightly different strategy r from
the wild-type strategy r* (see Appendix 2). The ``con-
stant'' term does not include the mutant strategy r. The
sign of the coefficient of r in Eq. (18) determines evolu-
tion of the vertical transmission rate: natural selection in
the host would increase r if the sign is positive, while it
would decrease r if negative.

First, we consider the case where the current value of
r* is larger than the value r̂ which has been defined by
x*(r̂)=x̂ in Eq. (16). In this case, the ESS x* satisfies
Eq. (16), a decreasing function of r* as shown in Fig. 3.
Using Eqs. (15) and (16), the coefficient of r in Eq. (18)
can he rewritten as

hI*pr*(1&r*)[ p2hr*&a1[ pbn+(1& p) cS0]]
a1[ p2hr*2&a1[ pbn+(1& p) cS0] r*+a1cS0]

. (19)

As previously shown in Eq. (16), the denominator of (19)
is positive when r*> r̂. There exists a critical vertical
transmission rate which makes the numerator of (19)
equal to zero. The critical value is

rH=
1
p

}
a1bn

h
+

1& p
p2 }

a1 cS0

h
, (20)

where h=a0 b1+a1 b0 . When the current vertical trans-
mission rate is larger than rH , (19) is positive (i.e., the
mutant host with greater r is selected when r*>rH , while
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that with smaller r is selected when r*<rH). At the
beginning stage of symbiosis, it would be natural that
a symbiont could not reproduce inside its host without
exploiting the host (a0=0) and that an infected host



reproduces at the same rate as an uninfected host if it was
not exploited by its symbiont at all (b0=bn). Since
h=a1bn , the critical value rH is larger than 1, which
means that the host should decrease the vertical trans-
mission rate because r* is always smaller than rH . As a0

or b0 increases, rH decreases so that it may take a smaller
value than 1, which we will analyze in detail later.

Next, we consider the case where current r* is smaller
than r̂. In this case, x*=x̂ and the condition under which
the coefficient of r in Eq. (18) is positive is

DH #b0&b1 x̂&
pbn+(1& p) cS0

p2 >0 (21)

(see Appendix 4). The condition (21) does not include r*
so that the coefficient of r in Eq. (18) is positive irrespec-
tive of r* in the interval 0�r*< r̂, when DH>0;
otherwise, it is negative irrespective of r*. At the begin-
ning stage of symbiosis where b0=bn , we can easily show
that DH<0. Therefore, natural selection in the host
would cause r* to decrease. As b0 increases, DH may be
positive. When DH=0, rH in Eq. (20) corresponds to r̂
(see Appendix 4), and therefore when DH>0, r*
increases to 1.

5. THE CONDITION FOR MUTUALISM

We first assume that the symbiont always obtains a
profit from its host by means of symbiosis, because,
otherwise, the symbiont avoids infecting the host so that
symbiosis between the two species does not occur. In
order to determine the relationship between the host and
the symbiont, let us introduce the function

WH=[(1&r*)+ pr*](b0&b1 x*)&bn . (22)

The first and the second terms are the net reproduction
rate of the infected host and that of the uninfected host,
respectively. We can call the relationship as parasitic
when WH<0, and as mutualistic when WH>0. Using
Eqs. (4) and (8) for Eq. (18), we can see that the sign of
the coefficient of r in Eq. (18) exactly corresponds to that
of WH when p=1. This implies that when there are no
costs in vertical transmission, the host would increase the
vertical transmission rate if the symbiont is beneficial,
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and vice versa.
When r*>r̂, WH can be rewritten by using Eq. (16) as

WH B phr*&a1bn , (23)
where the symbol ``B'' implies that both sides are equal
in their signs. There exists a critical vertical transmission
rate above which WH>0 and below which WH<0. The
critical value is

r1=
1
p

}
a1 bn

h
. (24)

When r*< r̂ where x*=x̂, WH is a monotonically
decreasing function of r*. There exists a critical vertical
transmission rate above which WH<0 and below which
WH>0. The critical value is

r0=
1

1& p \1&
bn

b0&b1 x̂+ . (25)

At the beginning stage of symbiosis where a0=0 and
b0=bn , r1>1 and r0<0 for p<1, so that the rela-
tionship between the host and the symbiont is parasitic at
any vertical transmission rate.

6. UTILIZATION OF PARTNER'S
WASTE PRODUCTS AND FINALLY
EVOLVING SYSTEM

Although we have dealt with the evolution of strategies
x and r so far, other parameters could also evolve. Listed
in Table I are the evolutionary trends which the sym-
biont or the host would slowly develop during a long
interaction with parasitism. A symbiont may increase a0

by evolving to utilize some metabolic or digestive waste
products excreted by the host. It may increase a1 by
improving the translation efficiency of exploiting matters

TABLE I

Evolutionary Trends of Changes in Parameters and Their Effects on rH

in Eq. (20), D H in Eq. (21), r1 in Eq. (24), and r0 in Eq. (25).

Does it make:
Evolutionary

trends rH<1? DH>0? r1<1? r0>0?

Symbiont a0 Z Yes No Yes No
strategy a1 Z No No No No

Host b0 Z Yes Yes Yes Yes
strategy b1 z No (Yes) No (Yes)
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Note. Some parameters reduce the values rH and r1 to possibly
make them smaller than 1, while others do not. Some parameters
increase the values DH and r0 to possibly make them positive, while
others do not.



to its fitness. It is also probable that a host evolves to be
able to utilize waste products excreted by the symbiont
(increase in b0), or to reduce the fitness effect of exploita-
tion by the symbiont (decrease in b1). According to such
a slow change in a0 , a1 , b0 , or b1 , evolutionary dynamics
of r changes, resulting in changes in the relationship
between the host and the symbiont. We can analyze the
transition of dynamics by examining the parameter
dependence of rH , DH , r1 , and r0 given in the previous
sections.

An increase in a0 makes rH<1 or r1<1. An increase in
b0 makes rH<1, r1<1, DH>0, or r0>0. Although a
decrease in b1 makes DH>0 or r0>0, the increase in b0

is more crucial than the decrease in b1 . This is because,
even if b1 decreases to take an infinitely small value,
DH<0 and r0<0 so far as the value of b0 remains at bn .
The effects of these parameters on the critical values are
summarized in Table I.

FIG. 4. Diagrams describing effects of changes in a0 and b0 on
evolution of vertical transmission under the control of the host and
on the relationship between the host and the symbiont. (a)
bn+b1 x̂ < bn �p; (b) bn �p < bn+b1 x̂ < bn�p+(1& p) cS0 �p2; (c)
bn �p+(1& p) cS0 �p2<bn+b1 x̂. Lines parallel to the a0 -axis are
b0=b1 x̂+bn�p+(1& p) cS0�p2, which is obtained from DH=0 given
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in (21) (above), and b0=bn+b1 x̂ obtained from r0=0 in Eq. (25)
(below). Oblique lines are p(a0b1+a1 b0)=a1 bn+(1& p) a1cS0 �p
obtained from rH=1 in Eq. (20) (above), and p(a0b1+a1b0)=a1bn

obtained from r1=1 in Eq. (26) (below). In an evolutionary sense, the
values of a0 and b0 tend to increase from the point (a0 , b0)=(0, bn).
Since the change in a1 never has effects on the
dynamics of r and the change in b1 has only small effects
on its dynamics, we consider only changes in a0 and b0 in
the following. According to values of a0 and b0 , the rela-
tionship between the host and the symbiont is classified
into several cases as shown in Fig. 4. The lines DH=0
and r0=0 are horizontal in the space (a0 , b0) where the
origin is (0, bn). The former line is always above the latter
line. The oblique lines rH=1 and r1=1 are also parallel,
and the former is always above the latter. The line DH=0
is always above the line rH=1 but there are three cases
depending on whether r0=0 intersects rH=1 and r1=1.
The evolutionary dynamics of r in each case and the rela-
tionship in each region, which is divided by the lines in
Fig. 4, are shown in Fig. 5.

In the region (A) where rH>1, DH<0, r1>1, and
r0<0, the relationship is parasitic and these is always
selection for lower r in the host, irrespective of r*. In (B)
where r1<1, the relationship is parasitic when r*<r1

while it is mutualistic when r*>r1 , and there is always
selection for lower r in the host. In (C) where r1<1 and
rH<1, the relationship is parasitic when r*<r1 while it
is mutualistic when r*>r1 , and selection on the host
favors lower r when r*<rH while it favors greater r when
r*>rH . In (D) where r0>0, the relationship is
mutualistic when r*<r0 while it is parasitic when
r*>r0 , and there is always selection for lower r in the
host. In (E) where r1<1 and r0>0, the relationship is
mutualistic when r*<r0 and r*>r1 while it is parasitic
when r0<r*<r1 , and there is always selection for lower
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FIG. 5. Diagrams describing evolution of vertical transmission
controlled by the host and the relationship between the host and the
symbiont. Arrows show directions of evolution of the vertical transmis-
sion. Thick parts mean ``mutualistic'' and thin parts ``parasitic.'' Letters
(A)�(G) correspond to the letters (A)�(G) in Fig. 4.



r in the host. In (F) where r1<1, rH<1, and r0>0, the
relationship is mutualistic when r*<r0 and r*>r1 while
it is parasitic when r0<r*<r1 , and selection on the host
favors lower r when r*<rH while it favors greater r when
r*>rH . The parasitic part can disappear if b0 increases
enough so that r0 and r1 meet together at r̂ (see
Appendix 4). In (G) where DH>0, the relationship is
mutualistic and there is always selection for greater r in
the host, irrespective of r*.

We can see from Fig. 5 that mutualism without vertical
transmission evolves for the regions (D)�(F) in Fig. 4 if
the mechanism of vertical transmission is controlled by
the host. The combined region of (D)�(F) is specified as
the following condition for b0 :

b1 x̂+bn<b0<b1 x̂+
bn

p
+

1& p
p2 cS0 . (26)

When p=1, there are no values of b0 which satisfy (26).
In other words, mutualism without vertical transmis-
sion never evolves if there are no costs for vertical trans-
mission. This is because the signs of the coefficient of
r in Eq. (18) and WH correspond to each other when
p=1 so that the condition under which there is selec-
tion for greater r in the host is exactly the same as that
when the relationship is mutualistic (i.e., the regions
(D)�(F), as well as (B), in Fig. 4 disappear). Moreover,
the regions (D)�(F) become larger as p becomes
smaller.

We can see from (26) that the higher cS0 , the wider the
interval of b0 in which mutualism without vertical trans-
mission evolves. When the host can easily acquire the
symbiont in a free-living state, it does not require vertical
transmission. A decrease in b1 makes the interval to move
to smaller values but it does not increase the width.

When the function a(x) takes Type I in Fig. 2,
mutualism without vertical transmission would never
evolve even if the host can make sufficient use of waste
products excreted by its symbiont. This is because Type I
does not have the critical value x̂ at which a(x) has a
maximum value, so that r0 given in Eq. (25) does not
become positive. It is necessary for the evolution without
vertical transmission that the symbiont has to suffer
some negative effects if it exploits its host too severely
(i.e., Type II in Fig. 2).

We can also see from Figs. 5C and 5F that if a sym-
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biont happened to increase r to a value larger than rH

where there is selection for greater r in the host,
mutualism with perfect vertical transmission should
evolve even if the control of r was transferred afterward.
Adding the case (G), mutualism with vertical transmis-
sion may evolve when

b0+
a0

a1

b1>
bn

p
+

1& p
p2 cS0 . (27)

This condition is satisfied when either b0 or a0 increases,
while (26) is satisfied only when b0 increases. Thus, we
can say that utilization of waste products from the sym-
biont by the host, instead of the reversed utilization, is
important for evolution of mutualism without vertical
transmission.

The degree of exploitation x* evolves to the negative
minimum value &a0 �a1 when r* evolves to 1 (see
Eq. (16)). On the other hand, x* evolves to the possible
maximum value x̂ when r* evolves to 0. The modes of
mutualism between the two cases are completely dif-
ferent. In the former case, the symbiont comes to sacrifice
its reproduction (a(x*)=0), while in the latter case the
symbiont exploits the host but the host utilizes waste
products from the symbiont so that the symbiont is
beneficial to the host in the total balance (i.e.,
b0&b1 x̂>bn).

7. DISCUSSION

Using a simple model where the symbiont can repro-
duce outside the host, we have shown that a mutualistic
relationship without vertical transmission may evolve
from parasitism under the following conditions: (i) some
costs are involved when a symbiont is vertically transmitted,
(ii) a symbiont suffers some negative effects if it exploits
its host too intensively, (iii) a host evolves such that it
can utilize waste products excreted by its partner, and
(iv) the mechanism of vertical transmission is controlled
by the host. We have also clarified the conditions under
which a mutualistic relationship with perfect vertical
transmission evolves: (v) either partner evolves such that
it can utilize waste products excreted by the other
partner, and (vi) the mechanism of vertical transmission
is controlled by the symbiont, or a symbiont happened to
increase the vertical transmission rate larger than a cer-
tain value (i.e., rH in Eq. (20)). We can say that charac-
teristic conditions for evolution of the mutualistic sym-
biosis without vertical transmission, which are never
required for that with vertical transmission, are condi-
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tions (i) and (ii). Since the conditions for evolution of the
mutualistic symbiosis with vertical transmission are the
same as those in the obligate symbiosis case analyzed by
Yamamura (1993, 1996) and were already discussed in



various aspects, we discuss here only the evolution of
mutualistic symbiosis without vertical transmission.

We have assumed that there exist some costs when a
symbiont is vertically transmitted. In mycorrhizas, it is
conceivable that a transportation of the symbiont from
the root to the parts in which seeds are produced involves
a great cost, especially in tall trees, although some grasses
transfer symbionts through seeds (Clay, 1990b). Another
reason why we have introduced the costs involved in
vertical transmission is a possibility of a burden for
immature hosts. Since resources for growth are more or
less exploited by the symbiont, a part of the hosts carry-
ing the symbiont could not grow up to the adult stage.
Actually, under low phosphorus conditions, the effective-
ness of mycorrhizal fungi changes from parasitic to
mutualistic with host growth (Bethlenfalvay et al., 1982;
Koide, 1985). Some marine invertebrates acquire sym-
bionts through ingestion at a certain growth stage
(Trench, 1979), suggesting that the symbiont may be
beneficial for the adult stage of the host while it may be
harmful for the immature stage. Another reason may
be the disadvantage of having symbionts with a single
strain through generations compared with hosts changing
symbionts among various strains under a fluctuating
environment. Since the symbionts reproduce asexually
inside the hosts, the strain of the symbionts inside the off-
spring of the hosts never changes if the symbionts are ver-
tically transmitted. There may be symbionts with various
strains in a free-living state, each adapting to its local
environments. Without vertical transmission, the host
establishing a new habitat can acquire a proper symbiont
from the environment. The effectiveness of mycorrhizal
symbionts is likely to vary with environmental condi-
tions (Newsham et al., 1994), and corals actually have an
ability to cope with environmental change through
changes in symbiont community composition (Rowan et
al., 1997). If there were no costs in vertical transmission,
mutualistic partners should evolve a mechanism of verti-
cal transmission because it is the most reliable method
for the host to obtain the mutualistic symbiont.

We have shown that mutualism without vertical trans-
mission never evolves if the number of symbionts
released from one infected host, a(x), is a monotonically
increasing function of the degree of exploitation (Type I
in Fig. 2): the form like Type II in Fig. 2 contributes to
preventing the symbiont from exploiting its host too
severely. There are some implications that trees defend
by lignification, deposition of tannins, or lysis of hyphae
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when they are invaded by incompatible fungi (Molina
and Trappe, 1982; Malajczuk et al., 1984). The critical
value on the degree of exploitation, x̂, can result from
inactivity, as well as defense systems on the host side,
owing to severe exploitation. If the critical value is caused
by inactivity of the host, x̂ seems to take relatively large
positive values. If it is caused by a defense system of the
host such as an immune system, x̂ seems to take relatively
small positive values. Since r0 in Eq. (25) is a decreasing
function of x̂, a smaller x̂ can more easily cause evolution
of mutualism without vertical transmission. When the
defense system in the host has a keen sensitivity to exploi-
tation from its symbiont, the symbiont has to keep viru-
lence low, where mutualism without vertical transmission
would easily evolve if the host can make use of waste
products excreted by its symbiont. When the defense
system is not so sensitive to exploitation and therefore
inactivity of the host owing to symbiont exploitation
reflects the symbiont behavior, the symbiont can exploit
to a considerable extent, where mutualism without verti-
cal transmission would not easily evolve even if the host
can make use of waste products excreted by its symbiont.

We may also regard the negative effects to the sym-
biont fitness under severe exploitation as a result from
suppression of host growth. If high exploitation by the
symbiont restrains growth of the host, the release rate of
symbionts from the host would become lower because
the release rate may be proportional to the host size.
Thus, mutualism without vertical transmission is likely
to evolve in host organisms that can grow into a large
size. Symbioses in trees and mycorrhizal fungi or in many
corals and dinoflagellates seem to satisfy this condition.

We have assumed that a host is infected by one sym-
biont, but S can also be interpreted as the number of
infective doses of symbionts in the case where the host
is infected by more than one. We have shown that
mutualism without vertical transmission is more likely to
evolve when the number of (infective doses of ) symbionts
in the free-living state (S0) is large (see condition (26)). It
is actually considered a most intuitive and an acceptable
reason that trees and many corals do not vertically trans-
mit the symbionts because the symbionts are available, at
least, before the hosts become adults. However, we stress
here that such easy availability alone cannot give the full
explanation for evolution of mutualism without vertical
transmission. As shown in condition (26), the evolution
is easily realized when b1 is small or b0 is large. In the
symbioses between plants and mycorrhizal fungi, and
legumes and rhizobia, the symbionts exploit carbon as a
resource from the hosts, but the damage on the host side
seems small (b1 is small) when the light condition is good
enough to produce much carbon. On the other hand, the
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symbionts aid the hosts by giving nitrogen and
phosphorus (b0 is large) which seem sufficient for them-
selves. These characters result in easy evolution of
mutualism without vertical transmission.



As in the previous model with an obligate symbiont
that has no free-living state (Yamamura, 1996),
mutualism with perfect vertical transmission may evolve
in the present model with a facultative symbiont. This
implies that it is not surprising that some corals vertically
transmit their symbionts while others do not. We will
have to examine carefully whether corals and other
symbioses without vertical transmission have trends
suggested here as the evolutionary condition.

APPENDIX 1

Existence of Unique Positive I* and Its Stability

Since !*=I*�(U*+I*), U*=(1�!*&1) I*. Equa-
tion (8) in the text can be rewritten as

f \\ 1
!*

&1+ I*, I*+=bn+A!*, (A1)

where A=[(1&r)+ pr] b&bn . As !* described in
Eq. (10) takes a value between 0 and 1, bn+A!*>0.
Because the left-hand side of (A1) is a monotonically
increasing function of I*, a positive solution of I*
uniquely exists if and only if f (0, 0)<bn+A!*. Due to
the uniqueness of !* and I*, U* is also unique.

We demonstrate that the condition f (0, 0)<bn+A!*
is equivalent to the condition that the origin (0, 0) is
unstable. From Eqs. (1) and (2), we can see that the
origin is also a stationary point. Linearizing Eqs. (1) and
(2) at the origin, we have

d
dt _

$U
$I &=_bn& f0&cS0

cS0

(1&r) b
prb& f0 & _

$U
$I &

=M0 _$U
$I & , (A2)

where f0= f (0, 0), and $U and $I are sufficiently small
displacements from the origin. From Eq. (A2), the
necessary and sufficient condition that the origin is stable
is tr M0<0 and det M0>0. Then, the condition is

tr M0= prb+bn&cS0&2f0<0, (A3)

and
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det M0= f 2
0&( prb+bn&cS0) f0

&[(1&r)+ pr] bcS0+ prbbn>0. (A4)
Inequality (A3) leads to

f0> 1
2( prb+bn&cS0), (A5)

and inequality (A4) leads to

f0< 1
2( prb+bn&cS0&- D$)

or,

f0> 1
2( prb+bn&cS0+- D$), (A6)

where D$=( prb+bn&cS0)2+4[[(1&r)+ pr] bcS0&
prbbn]. Combination of inequalities (A5) and (A6),
which is the condition that the origin is stable, is equiv-
alent to

f0> 1
2( prb+bn&cS0+- D$). (A7)

Using Eq. (10), the right-hand side of (A7) is equal to
bn+A!*. This means that I* does not take a positive
equilibrium value when the origin is stable and that there
is one positive equilibrium value when the origin is
unstable.

Next, we will show that the equilibrium point is stable
provided that I* has a positive equilibrium value.
Linearizing Eqs. (1) and (2) at the equilibrium point
(U*, I*), we have

d
dt _

$U
$I &

=_bn& f *U } U*& f *&cS0

& f *U } I*+cS0

& f *I } U*+(1&r) b
prb& f *I } I*& f * &_$U

$I &
=M _$U

$I & , (A8)

where

f *U=�f (U, I )��U | U=U*, I=I* ,

f *I=�f (U, I )��I | U=U*, I=I* ,
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and

f *= f (U*, I*).



Using Eqs. (4) and (5), we have

M=_
& f *U } U*&

(1&r) bI*
U*

& f *I } U*+(1&r)b

& .

&f *U } I*+cS0 &f *I } I*&
cU*S0

I*
(A9)

The condition that the equilibrium point (U*, I*) is
stable is tr M<0 and det M>0. We have tr M and
det M from (A9):

tr M=&f *U } U*& f *I } I*&
(1&r) bI*

U*
&

cU*S0

I*
,

(A10)

det M=\(1&r) bI*
U*

+
cU*S0

I* + } ( f *U } U*+ f *I } I*).

(A11)

It is obvious that tr M<0 and det M>0, because f (U, I )
is an increasing function of U and I (i.e., fU>0 and
fI>0).

APPENDIX 2

Derivation of Mutant Fitness WS(x, x*) in
Eq. (11)

The dynamics of mutant symbionts adopting a
strategy x$ in the population with most symbionts having
a strategy x is given by

dI$
dt

= prb$I$& f (U*, I*) } I$+cU*S$, (B1)

dS$
dt

=;S$& g(S0) } S$+a$I$&cU*S$, (B2)

where U* and I* are the equilibrium values in the text.
The symbol ``$ '' denotes ``mutant.'' In these equations,
``I$ '' means the number of hosts infected by the mutant
symbionts. We have assumed that the number of mutant
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symbionts is so small that U* and I* are almost the same
as those in the case where all symbionts have the same
strategy x*. Using Eqs. (5) and (6) for f (U*, I*) and
g(S0), we have
d
dt _

I$
S$&=_

pr(b$&b)&
cU*S0

I*
cU*

& _ I$
S$&

a$ &
aI*
S0

=M x
S _ I $

S$& . (B3)

The characteristic equation of M x
S is given by

*$2&(tr M x
S) *$+det M x

S=0. (B4)

We assume that the difference between x$ and x is so
small that *$ is also sufficiently small. Neglecting *$2 in
Eq. (B4), we have

*$&
det M x

S

tr M x
S

=
&(aI*�S0)[ pr(b$&b)&(cU*S0 �I*)]&a$cU*

pr(b$&b)&(cU*S0�I*)&(aI*�S0)
.

(B5)

In the denominator, pr(b$&b) is sufficiently small in
comparison with the other terms. Neglecting pr(b$&b),
we have

*$&
aI*2

cU*S 2
0+aI*2 { pr(b$&b)+

cU*S0

aI*
(a$&a)=

B pr(b$&b)+
cU*S0

aI*
(a$&a). (B6)

If the right-hand side is negative, the mutant symbionts
cannot invade the system because the eigenvalue is
negative (*$<0). On the other hand, the mutant sym-
bionts can invade the system if the right-hand side of
(B6) is positive. Since the eigenvalue * in the case where
all symbionts have the same strategy x is zero, we can
describe (B6) by

2* B pr 2b+
cU*S0

aI*
2a, (B7)

where 2*=*$&*, 2a=a$&a, and 2b=b$&b. We
define x$&x as 2x. Dividing (B7) by 2x and then taking
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the limit 2x � 0, we have

d*
dx

B pr
db(x)

dx
+

cU*S0

aI*
da(x)

dx
. (B8)



Here, we introduce a function

WS(x$, x)= prb(x$)+
cU*S0

a(x) I*
a(x$). (B9)

In (B6) and Eq. (B9), ``*$ takes a maximum value 0 at an
ESS x'' is equivalent to ``WS(x$, x) takes a maximum value
at the ESS x.'' Replacing x$ and x with x and x*, respec-
tively, we have the function given in Eq. (11) in the text.

Derivation of Mutant Fitness WS(r, r*) in
Eq. (17)

The dynamics of mutant symbionts adopting a
strategy r$ in the population with most symbionts having
a strategy r is given by

dI$
dt

= pr$bI$& f (U*, I*) } I$+cU*S$, (B10)

dS$
dt

=;S$& g(S0) } S$+aI$&cU*S$, (B11)

where the symbol ``$ '' denotes ``mutant.'' Handling
Eqs. (B10) and (B11) with the same procedure as that in
WS(x*, x), we have WS(r*, r) in Eq. (17).

Derivation of Mutant Fitness WH(r, r*) in
Eq. (18)

The dynamics of mutant hosts adopting a strategy r$ in
the population with most hosts having a strategy r is
given by

dU$
dt

=bnU$& f (U*, I*) } U$+(1&r$) bI$&cU$S0 ,

(B12)

dI$
dt

= pr$bI$& f (U*, I*) } I$+cU$S0 , (B13)

where the symbol ``$ '' denotes ``mutant.'' In these equa-
tions, ``I$ '' means the number of mutant hosts. We have the
function WH(r*, r) in Eq. (18) from Eqs. (B12) and (B13).

APPENDIX 3
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Derivation of the ESS x*

We define the left-hand side of Eq. (15) as L15 . Using
Eq. (5), L15 can be rewritten as
L15=&prb1+
a1[ f (U*, I*)& prb(x*)]

a0+a1x*

=&
1

a0+a1 x*
[ prh&a1 f (U*, I*)], (C1)

where h=a0b1+a1b0 . Inserting Eq. (8) into Eq. (C1),
we have

L15=&
1

a(x*)

_( prh&a1bn&a1[[(1&r)+ pr] b(x*)&bn] !*),

(C2)

where !*=I*�H* and we replaced a0+a1x* with a(x*).
Inserting Eq. (10) into Eq. (C2), we have

L15=&
1

2a(x*)

_[2prh& pra1b(x*)&a1bn+a1 cS0&a1 - D].

(C3)

Setting Eq. (C3) to zero and solving with regard to x*,
we have the ESS x* given in Eq. (16) in the text.

Relationship between x* and r

Differentiating Eq. (16) with regard to r in order to see
the dependency of x* on r, we have

�x*
�r

B p2h(1&r)2& p[ ph&a1 (bn&cS0)], (C4)

where the symbol ``B'' implies that both sides are equal
in their signs. The right-hand side, which we define as
R(r), is a monotonically decreasing function of r in the
interval, 0�r�1. According to parameters such as p and
cS0 , the dependency of x* in Eq. (16) on r takes various
forms: x* is a monotonically decreasing function of r
irrespective of p if R(0)<0 (i.e., cS0>bn), and it is a
monotonically increasing function of r if R(1)>0 (i.e.,
ph<a1 (bn&cS0)). As for the latter case where x* given
in Eq. (16) is a monotonically increasing function of r,
the ESS x* is, however, a constant (x*=x̂) independent
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of r, because the right-hand side of Eq. (12) is always
positive in the region 0<r<1 and &a0 �a1<x<x̂.
When ph>a1 (bn&cS0)>0, x* is not a monotonic
function of r.



APPENDIX 4

Host's Behavior at Large Values of b0 When
r*<r̂

We consider the case where the vertical transmission
rate is smaller than the critical value r̂ which satisfies
x*(r̂)=x̂ in Eq. (16) in the text. The degree of exploita-
tion is, therefore, a constant (x*=x̂). Using Eq. (4) for
cU*S0 and Eq. (8), Eq. (18) can be rewritten as

WH(r, r*)B([[(1&r*)+ pr*] b(x*(r*))&bn] '*

&(1& p)(1&r*) b(x*(r*))) r+constant,

(D1)

where '*=1&!* or '*=U*�H*, the proportion of the
uninfected lost. We define the coefficient of r in (D1) as
CD1 . Inserting Eq. (10) into CD1 and replacing x* with x̂
to deal with the case r*< r̂, we have

CD1= 1
2[2pb(x̂)& pb(x̂) r*&bn+cS0&- D]. (D2)

It is obvious that CD1 is negative if 2pb(x̂)&
pb(x̂) r*&bn+cS0<0, where there is always selection
for lower r in the host.

We will consider the sign of CD1 under the condition
that 2pb(x̂)& pb(x̂) r*&bn+cS0>0. We can rewrite
Eq. (D2) as

CD1=
1
2

(2pb(x̂)& pb(x̂) r*&bn+cS0)2&D

2pb(x̂)& pb(x̂) r*&bn+cS0+- D

=
1

8b(x̂)
(1&r*)[ p2b(x̂)& pbn&(1& p) cS0]

2pb(x̂)& pb(x̂) r*&bn+cS0+- D
.

(D3)

Selection on the host favors greater r if p2b(x̂)& pbn&
(1& p) cS0>0, while it favors lower r if p2b(x̂)& pbn&
(1& p) cS0<0.

The condition that there is selection for greater r in the
host (CD1>0) is

2pb(x̂)& pb(x̂) r*&bn+cS0>0, (D4)

and

p2b(x̂)& pbn&(1& p) cS0>0. (D5)
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Using Eq. (14), (D4) can be rewritten as

b0&b1 x̂&
1

2&r*
bn&cS0

p
>0, (D6)
and (D5) can be rewritten as

b0&b1 x̂&
pbn+(1& p) cS0

p2 >0. (D7)

Since (D6) is a necessary condition of (D7), the condi-
tion under which CD1>0 is equivalent to (D7). Here, we
define the left-hand side of (D7) as DH . To the contrary,
there is selection for lower r in the host if DH<0. Note
that DH does not include r*. This means that selection on
the host favors lower r if DH<0, and it favors greater r
if DH>0 in the interval 0�r*�r̂.

When the host evolves to increase b0 such that DH=0,
the coefficient of (D1) becomes equal to zero in the inter-
val 0�r*� r̂. We can show that DH=0 is the condition
under which rH given in Eq. (20) becomes r̂. This condi-
tion is equivalent to the condition

x*(rH)=x̂. (D8)

Inserting Eq. (20) into Eq. (16), we have

x*(rH)=
b0

b1

&
pbn+(1& p) cS0

p2b1

. (D9)

Inserting Eq. (D9) into Eq. (D8) and solving with regard
to b0 , we have

b0&b1 x̂&
pbn+(1& p) cS0

p2 =0. (D10)

Thus, when b0 increases such that DH=0, the critical
value rH reaches r̂. Then, there is selection for greater r in
the host irrespective of the current r* if the host evolves
to increase b0 such that DH>0.

Correspondence of r1 to r0 at r̂

The critical value r1 in Eq. (24) and the critical value r0

in Eq. (25) should meet together if the parameter b0 con-
tinues to increase, because r1 and r0 are monotonically
decreasing and increasing functions, respectively, and
r1 � 0 and r0 � 1�(1& p) in the limit b0 � �. We will
show that these two critical values meet together at r̂.

The two critical values are obtained from setting W

Genkai-Kato and Yamamura
H

given in Eq. (22) to zero. The value r1 is given by

[(1&r*)+ pr*](b0&b1 x*)=bn , (D11)



where x* is given in Eq. (16) and r*� r̂. The value r0 is
given by

[(1&r*)+ pr*](b0&b1 x̂)=bn , (D12)

where x̂ is independent of the vertical transmission rate
or other parameters, and r*� r̂. It is obvious that
Eqs. (D11) and (D12) are exactly the same if r*=r̂,
because r̂ has been defined by x*( r̂)=x̂. This means that
if b0 continues to increase, r1 decreases while r0 increases
so that they meet together at r̂.
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